Posts Tagged ‘GMO safety’

GMO apples that never brown could hit stores soon

January 22, 2017

http://www.cnn.com/2017/01/20/health/apples-genetically-modified-on-sale-soon/index.html

Story highlights

  • The USDA approved the GMO apples nearly two years ago
  • Non-browning apples will only be available in Midwest stores for now, company says

(CNN)For a select few apple lovers in the US, a Golden Delicious slice will no longer turn brown as the first genetically modified apples are expected to go on sale early next month.

A small amount of Arctic brand sliced and packaged Golden Delicious apples, produced by Okanagan Specialty Fruits in British Columbia, Canada, will hit the shelves of 10 stores in the Midwest in February and March, Neal Carter, the company’s founder and president, told the agricultural news website Capital Press. Arctic’s website lists the apples as being available early this year in some test markets.
Carter said Midwestern stores were the first choice because they seemed like a good fit demographically and in size. He wouldn’t name the stores, stating it’s up to retailers to announce that they’ll be selling the non-browning apples.
“We’re very optimistic with respect to this product because people love it at trade shows,” he said earlier this month. “It’s a great product and the eating quality is excellent.”
Along with not turning brown, the apples should also be crispier in texture — possibly winning over some picky eaters.
Nearly two years ago, the US Department of Agriculture approved the US’s first genetically modified apples.
The USDA’s Animal and Plant Health Inspection Service granted its approval based on “a final plant pest risk assessment that finds the GE (genetically engineered) apples are unlikely to pose a plant pest risk to agriculture and other plants in the United States … [and] deregulation is not likely to have a significant impact on the human environment,” as stated in their report.
The Food and Drug Administration is not required to approve genetically engineered crops for consumption. Most companies engage in a voluntary safety review process with the FDA, and Okanagan did that.
The US Apple Association was wary of Arctic’s apple after the USDA approval, but the group has since taken a more neutral stance.
“US Apple supports consumer choice in the apples and apple products they select. Consumers will be able to decide whether to try the new, “non-browning” apples, and ultimately, the marketplace will determine whether there is a demand for them,” state the association on their website.

Browning is natural, but…

There’s nothing technically wrong with an apple that browns.
It all comes down to oxygen being introduced into plant tissue when an apple is sliced, bruised or bitten.
The US Apple association explains: “The degree to which an apple browns depends upon that variety’s natural levels of polyphenoloxydase (PPL) and Vitamin C (ascorbic acid). The lower the level of PPL, the less the variety will brown.
But Okanagan Specialty Fruits describes the process a bit differently: “Polyphenol oxidase (PPO) found in one part of the cell mixes with polyphenolics found in another part of the cell. (PPO is a plant enzyme. Polyphenolics are one of the many types of chemical substrate that serve various purposes, including supplying apples with their aroma and flavor.) When PPO and polyphenolics mix, brown-toned melanin is left behind,” they state on their website.
When brown, an apple isn’t necessarily rotten, but Okanagan claim the benefits of non-browning apples go beyond the visual appeal and a reduction in waste. The company says stores or producers often use expensive chemicals to delay the browning of apples and many shoppers frown at the idea of chemicals or pesticides on their produce.
The consensus among scientists and nutritionists is that GMOs are safe, but some consumers are still turned off by GMO labels.
Though the apples are only being trialed in the Midwest, the company have faith they will soon become a welcome option elsewhere.

GE Crop Risk Assessment Challenges: An Overview (Opinion)

May 12, 2013

GE Crop Risk Assessment Challenges: An Overview

By Dr. Charles Benbrook | May 6, 2013

There have been dramatic changes in the transgenic composition of GE corn and soybeans over the last five years, coupled with a substantial increase in reliance on pesticides and Bt toxins. Compared to the first five years of commercial use (1996-2000), today’s GE corn and soybeans in the U.S. require:

  • About twice as much herbicide per acre, with glyphosate/Roundup accounting for essentially all the growth;
  • In corn, two to six Bt toxins to deal with European corn borer and the corn rootworm complex;
  • Delayed release, systemic seed treatments including at least two insecticides and two fungicides, one of which is a nicotinyl implicated in honey bee Colony Collapse Disorder;
  • A return to corn soil insecticide use as a component of Bt-gene, resistance-management programs (eroding a portion of the reduction in insecticide use brought about by Bt corn);
  • Significant and historically unprecedented increases in fungicide use on corn (11 percent of crop acres were treated in latest USDA pesticide use survey [2010], no more than 1 percent was treated previously); and
  • Approval and commercial planting in the U.S. of the first GE crop that will be consumed in significant quantities by humans in a largely unprocessed form – Bt and RR sweetcorn.

The move to stacked varieties expressing multiple traits, coupled with the above changes in the intensity of chemical use required to bring GE crops to harvest, raises new questions about new routes of exposure and about cumulative levels of exposure to GE proteins, potential allergens and pesticides, especially via drinking water, certain foods made from corn or soybeans, and, for infants, breast milk, cow’s milk, soymilk, and formula. It also raises new testing challenges arising from the likely presence of multiple transgenes, DNA fragments, promoters, regulatory sequences and chemicals from pesticides (active ingredients, metabolites, surfactants, adjuvants, etc).

These changes pose serious risk assessment challenges that are, for the most part, being ignored by the industry and regulatory authorities. New information is essential to convince regulators that they must invest substantially more public resources in the independent testing of GE crop safety. The two core goals for a new testing initiative should be to (a) resolve lingering uncertainty over the safety of the GE traits currently on the market, and (b) develop advanced testing methods and protocols for application in the testing of future GE food traits.

At a minimum, the following steps should be taken to explore key questions about today’s GE crops:

1. Quantification of the levels of pesticides and their metabolites/breakdown products associated with GE crops in key foods and human fluids (blood and urine), encompassing initially glyphosate, AMPA, nicotinyl seed treatments and Bt proteins. Top priority foods to test include whole wheat grain and flour, whole wheat bread, and soy-derived ingredients and foods. Essential liquids to test include cow’s milk, breast milk, soymilk and infant formula.

2. Development of methods to accurately quantify GE protein exposure levels in tissues and organs of concern in evaluating human health risks. The research would also be designed to track the breakdown products formed as GE proteins move through the digestive system. Methods would be developed to identify the form of novel proteins or other phytochemicals from GE foods, as well as the quantities passing from the GI tract into the bloodstream, from the blood to the kidneys and liver, and in the case of pregnant women, across the blood-brain barrier.

3. Methods must be developed to assess the impacts on fetal development following pre-natal exposure to GE proteins via maternal blood flows. Focus should be on epigenetic patterns of gene expression and the frequency of auto-immune diseases including food allergies, asthma and behavioral problems.

4. In light of novel combinations of exposures, including combinations of glyphosate, AMPA, a nicotinyl insecticide and Bt proteins, short-term cell assays should be used to test for toxic potential of each of these singly and in various combinations. The results can be used to target subsequent, long-term testing.

5. An appropriate, government agency or international organization should fund long-term toxicology and cancer feeding studies in at least two species of laboratory animals on a cross-section of the major traits now in GE varieties. Trials should cover the most widely planted Bt endotoxins alone, the EPSPS gene conferring resistance to glyphosate alone and these two traits in combination. At the conclusion of a first round of testing, the research team should issue recommendations for the design and conduct of future cancer feeding trials applied to GE food traits and render judgments regarding the need for additional testing.

© Food Safety News